Replacement of the positively charged Walker A lysine residue with a hydrophobic leucine residue and conformational alterations caused by this mutation in MRP1 impair ATP binding and hydrolysis.

نویسندگان

  • Frederic Buyse
  • Yue-xian Hou
  • Catherine Vigano
  • Qing Zhao
  • Jean-Marie Ruysschaert
  • Xiu-bao Chang
چکیده

MRP1 (multidrug resistance protein 1) couples ATP binding/hydrolysis at its two non-equivalent NBDs (nucleotide-binding domains) with solute transport. Some of the NBD1 mutants, such as W653C, decreased affinity for ATP at the mutated site, but increased the rate of ATP-dependent solute transport. In contrast, other NBD1 mutants, such as K684L, had decreased ATP binding and rate of solute transport. We now report that mutations of the Walker A lysine residue, K684L and K1333L, significantly alter the tertiary structure of the protein. Due to elimination of the positively charged group and conformational alterations, the K684L mutation greatly decreases the affinity for ATP at the mutated NBD1 and affects ATP binding at the unmutated NBD2. Although K684L-mutated NBD1 can bind ATP at higher concentrations, the bound nucleotide at that site is not efficiently hydrolysed. All these alterations result in decreased ATP-dependent solute transport to approx. 40% of the wild-type. In contrast, the K1333L mutation affects ATP binding and hydrolysis at the mutated NBD2 only, leading to decreased ATP-dependent solute transport to approx. 11% of the wild-type. Consistent with their relative transport activities, the amount of vincristine accumulated in cells is in the order of K1333L> or =CFTR (cystic fibrosis transmembrane conductance regulator)>K684L>>>wild-type MRP1. Although these mutants retain partial solute transport activities, the cells expressing them are not multidrug-resistant owing to inefficient export of the anticancer drugs by these mutants. This indicates that even partial inhibition of transport activity of MRP1 can reverse the multidrug resistance caused by this drug transporter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The ATP sites of AAA+ clamp loaders work together as a switch to assemble clamps on DNA.

Clamp loaders belong to a family of proteins known as ATPases associated with various cellular activities (AAA+). These proteins utilize the energy from ATP binding and hydrolysis to perform cellular functions. The clamp loader is required to load the clamp onto DNA for use by DNA polymerases to increase processivity. ATP binding and hydrolysis are coordinated by several key residues, including...

متن کامل

A Novel Function for the Conserved Glutamate Residue in the Walker B Motif of Replication Factor C

In all domains of life, sliding clamps tether DNA polymerases to DNA to increase the processivity of synthesis. Clamp loaders load clamps onto DNA in a multi-step process that requires ATP binding and hydrolysis. Like other AAA+ proteins, clamp loaders contain conserved Walker A and Walker B sequence motifs, which participate in ATP binding and hydrolysis, respectively. Mutation of the glutamat...

متن کامل

The arginine finger of the Bloom syndrome protein: its structural organization and its role in energy coupling

RecQ family helicases are essential in maintaining chromosomal DNA stability and integrity. Despite extensive studies, the mechanisms of these enzymes are still poorly understood. Crystal structures of many helicases reveal a highly conserved arginine residue located near the gamma-phosphate of ATP. This residue is widely recognized as an arginine finger, and may sense ATP binding and hydrolysi...

متن کامل

Elements in nucleotide sensing and hydrolysis of the AAA+ disaggregation machine ClpB: a structure-based mechanistic dissection of a molecular motor

ATPases of the AAA+ superfamily are large oligomeric molecular machines that remodel their substrates by converting the energy from ATP hydrolysis into mechanical force. This study focuses on the molecular chaperone ClpB, the bacterial homologue of Hsp104, which reactivates aggregated proteins under cellular stress conditions. Based on high-resolution crystal structures in different nucleotide ...

متن کامل

Spectroscopic, Docking and Molecular Dynamics Simulation Studies on the Interaction of Etofylline and Human Serum Albumin

The purpose of this study is to investigate the interaction of Etofylline as an established drug for asthma remedy, with the major transport protein in human blood circulation, the human serum albumin (HSA). In this respect, the fluorescence and circular dichroism (CD) spectroscopy techniques, along with the molecular docking and molecular dynamics simulation methods were employed. Analysis of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 397 1  شماره 

صفحات  -

تاریخ انتشار 2006